330=-16t^2+14t+382

Simple and best practice solution for 330=-16t^2+14t+382 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 330=-16t^2+14t+382 equation:



330=-16t^2+14t+382
We move all terms to the left:
330-(-16t^2+14t+382)=0
We get rid of parentheses
16t^2-14t-382+330=0
We add all the numbers together, and all the variables
16t^2-14t-52=0
a = 16; b = -14; c = -52;
Δ = b2-4ac
Δ = -142-4·16·(-52)
Δ = 3524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3524}=\sqrt{4*881}=\sqrt{4}*\sqrt{881}=2\sqrt{881}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{881}}{2*16}=\frac{14-2\sqrt{881}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{881}}{2*16}=\frac{14+2\sqrt{881}}{32} $

See similar equations:

| .23y=2.53 | | 20+8j=76 | | `10-6x=70` | | 95=7z-3 | | 9x+1=10x,x | | 95=7z−3 | | (2/5)(2/5)^x=8/125 | | 5(m–8)=40 | | 51/5+g=92/5 | | 2y+23=21 | | 0.02*x=15 | | 4(m–8)=40 | | 3x(9+9)=59 | | 26-10d=-14 | | 26−10d=–14 | | 3x(2+9)=59 | | y=8(1−0.15)^5 | | (n+8)/3=9 | | q/9-3=1 | | y=8(1−0.15)5 | | n+5=−2 | | 1)x+4=2x-5 | | y=8(1−0.15)3 | | 5x+(-x)+12=x12+4+x | | -6x+3(2x-4)=-12 | | -n+14=35 | | 0.2b-18=-12 | | 11=x+2/3 | | 7x+2(3+2x)=18-3x | | Y=-4+3/4x | | v+29/8=7 | | 24=3(w+5)3 |

Equations solver categories